Strong Convergence of a Projected Gradient Method
نویسندگان
چکیده
منابع مشابه
Projected Semi-Stochastic Gradient Descent Method with Mini-Batch Scheme under Weak Strong Convexity Assumption
We propose a projected semi-stochastic gradient descent method with mini-batch for improving both the theoretical complexity and practical performance of the general stochastic gradient descent method (SGD). We are able to prove linear convergence under weak strong convexity assumption. This requires no strong convexity assumption for minimizing the sum of smooth convex functions subject to a c...
متن کاملConvergence Rates for Deterministic and Stochastic Subgradient Methods Without Lipschitz Continuity
We extend the classic convergence rate theory for subgradient methods to apply to non-Lipschitz functions. For the deterministic projected subgradient method, we present a global O(1/ √ T ) convergence rate for any convex function which is locally Lipschitz around its minimizers. This approach is based on Shor’s classic subgradient analysis and implies generalizations of the standard convergenc...
متن کاملUniversidad Central de Venezuela
A study of the convergence properties of spectral projected subgradient method is presented and the convergence is shown. The convergence is based on spectral projected gradient approach. Some updates of the spectral projected subgradient are described.
متن کاملNon-negative Matrix Factorization Based on Projected Nonlinear Conjugate Gradient Algorithm
The popular multiplicative algorithms in non-negative matrix factorization (NMF) are known to have slow convergence. Several algorithms have been proposed to improve the convergence of iterative algorithms in NMF, such as the projected gradient algorithms. However, these algorithms also suffer a common problem, that is, a previously exploited descent direction may be searched again in subsequen...
متن کاملSpectral Projected Gradient Method on Convex Sets 227 3 . New Algorithm
The spectral gradient method has proved to be effective for solving large-scale unconstrained optimization problems. It has been recently extended and combined with the projected gradient method for solving optimization problems on convex sets. This combination includes the use of nonmonotone line search techniques to preserve the fast local convergence. In this work we further extend the spect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012